Engineering: Past, Present and Future

WRI Conference – Montreal, Quebec June 7, 2017

CN Network

Network Track Miles

Mainline	Core	8,617
	Non-core	12,602
Non-Mainline		8,178
	Total	29,397

Infrastructure Capital Spending

2016	C\$1.6B
2017 Estimated	C\$1.6B

CN Engineering Safety Performance

• Engineering accidents down 65% and tonnage up 25% since 2006

My Family History

•4th Generation Railroader

John H. Ferryman
Depot Agent, GNR
Wenatchee, WA

William "Henri" Ferryman
Superintendent Engineering, GNR
Seattle, WA

•William H. Ferryman Jr.

Chief Engineer, Denver Region, BNDenver, CO

Railway Maintenance Planning

- Requests received from field employees based on their visual inspections
- Management reviewed submissions and relied heavily on subjective field <u>Current process</u>
- Use multiple technologies collecting automated data sets
- Generate capital programs from objective data collection and risk-based scores
 Future process
- Autonomous inspections
- Cognitive data streams

Rail Maintenance & Replacement Improvements Rail Maintenance

- Created a centralized team accountable for rail grinding, rail lubrication and establishing proper curve superelevations
- Objective optimize rail maintenance to extend rail life

Rail Replacement

- Developed a tangent rail replacement model
- The model identifies areas to relay based on a risk matrix
- Curve relay locations are based on review of historical wear rates

Risk Modeling of Tangent Rail

Programs Theoretical Rail Life Review

- CN replaced a significant amount of tangent rail in the late 1970's/early 1980's
- Currently relaying portions of that rail to match the theoretical life
- As we install higher strength steel, the theoretical life will increase

- Created a tangent rail replacement model that identifies areas of higher risk using objective metrics
- The risk matrix focuses on several individual items to prioritize locations for replacement

Interdepartmental Collaboration

Engineering and Mechanical

- Analyzed high impact wheels (HIW) and ISRF data to better understand the correlation
- Data review led to a standard for track inspections on dark territories for specific HIW Engineering, Mechanical and Transportation
 - Operations investigation team that collaborates to find solutions to problems
 - Use data and modeling to provide an objective view for challenging situations
 - Objective develop proactive strategies to reduce the potential risk of specific operations

The Future of Engineering Technology

More automated data collection

- Autonomous geometry systems
- Non-stop rail flaw testing
- VTI units
- Tie condition assessment
- Ground Penetrating Radar (GPR)
- Monitoring change run-over-run

Better utilize the information to prioritize work

- Review data trends to develop capital and maintenance programs
- Use data to improve and optimize capital and workforce planning models
- Develop comparable and objective track health scores

Asset Management based on Life **Gene**Strengths

- Understanding trends for visual, **RFD** and Geometry exceptions
- Adjusting test frequencies and • capital strategies based on trend lines
- Mapping track inventory using GIS

Opportunities

- Improve tools and reports to make it easier for field employees to access and consume relevant data
- Use multi-variable analysis to better understand track health •
- Move toward a predictive/prescriptive maintenance model
- Enhance data governance and quality •

Failure High \$ Risk (= Probability x Consequence) Minimal Strategy Combined Scheduled Scheduled Strategy Rehat Advanced Maintenance New Time -----

Engineering Reliability Analytics

ERA – Operational Module

- 11 -

Territory Overview and Oversight

- Quick access to territory overview
- Review inspection status
- Monitor track conditions
- Audit renairs while in the field

- Download reports and data to plan activities
- Visualize track health scores by track segment

ERA – Planning Module

Capital Planning Tools

- Reports that provide objective and comparable data
- Rail, tie and surfacing models that assist with capital planning

- Life-cycle asset management
- Foundation for predictive analytics

Workforce Planning Model

Guideline for Comparing Territories

- Point system for managing proper resource • allocation
 - Features •

Tonnage •

- Headcount ٠
- Projected Traffic

Conditions

Amount of track by class

Moving Toward the Future

- > Developing actionable predictive models
- Establishing a scalable enterprise solution for "big data"
- Making track data easy to access and easy to understand
- Getting the data to speak to users
- > Using information to lead our decision making

Thank You

